牛客网在线编程专题《剑指offer-面试题9:题目二扩展》变态跳台阶

题目链接:

https://www.nowcoder.com/practice/22243d016f6b47f2a6928b4313c85387?tpId=13&tqId=11162&tPage=1&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking

题目描述:

解题思路:

(1)归纳法

1阶台阶有:1种

2阶台阶有:2种

3阶台阶有:4种

4阶台阶有:8种

5阶台阶有:16种

.........

n阶台阶有:2^{n-1}

已经AC的代码:

public class Solution {
    public int JumpFloorII(int target) {
        return (int)Math.pow((double)2,(double)(target-1));
    }
}

(2)递归法

分析如下:

f(1) = 1

f(2) = f(2-1) + f(2-2)         //f(2-2) 表示有2个台阶一次跳2个阶的次数。

f(3) = f(3-1) + f(3-2) + f(3-3) 

...

f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n) 

说明: 

1)这里的f(n) 代表的是n个台阶有1,2,...n阶种的跳法数。

2)n = 1时,只有1种跳法,f(1) = 1

3) n = 2时,会有两种跳阶方式,一次1阶或者2阶,f(2) = f(2-1) + f(2-2) 

4) n = 3时,会有三种跳阶方式,1阶、2阶、3阶,

    那么就是第一次跳出1阶,后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)

    因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)

5) n = n时,会有n种跳的方式,1阶、2阶...n阶,得出结论:

    f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-1)

6) 以上已经是一种结论,但是为了简单,我们可以继续简化:

    f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)

    f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)

    可以得出:

    f(n) = 2*f(n-1)

7) 得出最终结论,在n阶台阶,一次跳阶个数为1、2、...n阶的方式时,总得跳法为:

              | 1       ,(n=0 ) 

f(n) =     | 1       ,(n=1 )

              | 2*f(n-1),(n>=2)

已经AC的代码:

public class Solution {
    public static int JumpFloorII(int target) {
    	if(target == 0)
    		return 1;
    	else if(target == 1)
    		return 1;
    	else 
    		return 2 * JumpFloorII(target - 1);	
    }
}

(3)拒绝时间开销,拒绝递归调用

递归的缺点:

1. 递归由于是函数调用自身,而函数调用是有时间和空间的消耗的:每一次函数调用,都需要在内存栈中分配空间以保存参数、返回地址以及临时变量,而往栈中压入数据和弹出数据都需要时间。->效率

2. 调用栈可能会溢出,其实每一次函数调用会在内存栈中分配空间,而每个进程的栈的容量是有限的,当调用的层次太多时,就会超出栈的容量,从而导致栈溢出。->性能

已经AC的代码:

public class Solution {
    public static int JumpFloorII(int target) {
    	int result = 1;
    	for(int i=1; i<target; i++) {
    		result = result * 2;
    	}
    	return result;
    }
}

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页